Blog Posts

Table top Banner Stands | Get Yours Today | Contact Us!

Posted by displaysolution on December 3, 2021 at 6:18am 0 Comments

Store Supply Warehouse shows how table top banner displays are perfect for crafters to display their merchandise at craft shows or their stores. We have opened our stores for your needs. Get the best banner stand displays.

Features & Benefits

Dye Sublimation on fabric or graphic printed on a SoFlat vinyl banner material.…

Continue

Chỉ Trong 3 Ngày Siết Cơ - Mua Whey Protein Ở Đâu

Posted by Vance Ladawn on December 3, 2021 at 6:17am 0 Comments

Liin Nguyễn, sinh năm 1992, hiện đang sinh sống và làm việc tại North Carolina, Mỹ. Cô nàng là cái tên khá nổi tiếng trong cộng đồng mạng khái quát cũng như những người mê tập gym nói riêng bởi thân hình săn chắc, số đo 3 vòng như mong muốn và số cân nặng chẳng thể lý tưởng hơn. Hiện tại Instagram của Liin cuốn hút tới 117 nghìn người theo dõi. Liin Nguyễn nổi tiếng trong cộng đồng mạng bởi thân hình bốc lửa, hấp dẫn nhờ tập gym. Sự thay đổi và điều chỉnh của cô nàng qua quá trình thực hiện.…

Continue

Holograms Market Growth with Trends, Analysis by Type, Application, Regions, Restraints, and Top Key Players Profile and forecast to 2028

Posted by nutan patel on December 3, 2021 at 6:17am 0 Comments

Holograms Market Global Industry report provides the latest market statistics, industry growth, size, share, trends, as well as driving factors. The Holograms report further covers the extensive analysis of the upcoming progress of the Holograms Market. The detailed overview of the market segments, product description, Holograms applications is presented in this report. At present, the market is developing its presence and some of the key players from the complete study are MDH Hologram,…

Continue

Natural Cinnamic Aldehyde Market - Global Industry Report, 2027

Posted by Aarti Mule on December 3, 2021 at 6:16am 0 Comments

Global Natural Cinnamic Aldehyde Market: Overview

The global natural cinnamic aldehyde market is estimated to witness rapid growth owing to its use in multiple applications across a wide variety of Industries. Natural cinnamic aldehydes find abundant use in the making of scents and perfumes. The property of high blending with chemicals in perfume making improves penetration…

Continue

How Web Scraping Is Used To Extract Yahoo Finance Data: Stock Prices, Bids, Price Change And More?

The stock market is a massive database for technological companies, with millions of records that are updated every second! Because there are so many companies that provide financial data, it's usually done through Real-time web scraping API, and APIs always have premium versions. Yahoo Finance is a dependable source of stock market information. It is a premium version because Yahoo also has an API. Instead, you can get free access to any company's stock information on the website.

Although it is extremely popular among stock traders, it has persisted in a market when many large competitors, including Google Finance, have failed. For those interested in following the stock market, Yahoo provides the most recent news on the stock market and firms.

Steps to Scrape Yahoo Finance

Create the URL of the search result page from Yahoo Finance.
Download the HTML of the search result page using Python requests.
Scroll the page using LXML-LXML and let you navigate the HTML tree structure by using Xpaths. We have defined the Xpaths for the details we need for the code.
Save the downloaded information to a JSON file.
We will extract the following data fields:

we-will-extract-the-following-data-fields
Previous close
Open
Bid
Ask
Day’s Range
52 Week Range
Volume
Average volume
Market cap
Beta
PE Ratio
1yr Target EST
You will need to install Python 3 packages for downloading and parsing the HTML file.

The Script
from lxml import html
import requests
import json
import argparse
from collections import OrderedDict
def get_headers():
return {"accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9",
"accept-encoding": "gzip, deflate, br",
"accept-language": "en-GB,en;q=0.9,en-US;q=0.8,ml;q=0.7",
"cache-control": "max-age=0",
"dnt": "1",
"sec-fetch-dest": "document",
"sec-fetch-mode": "navigate",
"sec-fetch-site": "none",
"sec-fetch-user": "?1",
"upgrade-insecure-requests": "1",
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.122 Safari/537.36"}
def parse(ticker):
url = "http://finance.yahoo.com/quote/%s?p=%s" % (ticker, ticker)
response = requests.get(
url, verify=False, headers=get_headers(), timeout=30)
print("Parsing %s" % (url))
parser = html.fromstring(response.text)
summary_table = parser.xpath(
'//div[contains(@data-test,"summary-table")]//tr')
summary_data = OrderedDict()
other_details_json_link = "https://query2.finance.yahoo.com/v10/finance/quoteSummary/{0}?formatted=true&lang=en-US®ion=US&modules=summaryProfile%2CfinancialData%2CrecommendationTrend%2CupgradeDowngradeHistory%2Cearnings%2CdefaultKeyStatistics%2CcalendarEvents&corsDomain=finance.yahoo.com".format(
ticker)
summary_json_response = requests.get(other_details_json_link)
try:
json_loaded_summary = json.loads(summary_json_response.text)
summary = json_loaded_summary["quoteSummary"]["result"][0]
y_Target_Est = summary["financialData"]["targetMeanPrice"]['raw']
earnings_list = summary["calendarEvents"]['earnings']
eps = summary["defaultKeyStatistics"]["trailingEps"]['raw']
datelist = []
for i in earnings_list['earningsDate']:
datelist.append(i['fmt'])
earnings_date = ' to '.join(datelist)
for table_data in summary_table:
raw_table_key = table_data.xpath(
'.//td[1]//text()')
raw_table_value = table_data.xpath(
'.//td[2]//text()')
table_key = ''.join(raw_table_key).strip()
table_value = ''.join(raw_table_value).strip()
summary_data.update({table_key: table_value})
summary_data.update({'1y Target Est': y_Target_Est, 'EPS (TTM)': eps,
'Earnings Date': earnings_date, 'ticker': ticker,
'url': url})
return summary_data
except ValueError:
print("Failed to parse json response")
return {"error": "Failed to parse json response"}
except:
return {"error": "Unhandled Error"}
if __name__ == "__main__":
argparser = argparse.ArgumentParser()
argparser.add_argument('ticker', help='')
args = argparser.parse_args()
ticker = args.ticker
print("Fetching data for %s" % (ticker))
scraped_data = parse(ticker)
print("Writing data to output file")
with open('%s-summary.json' % (ticker), 'w') as fp:
json.dump(scraped_data, fp, indent=4)
Executing the Scraper
Assuming the script is named yahoofinance.py. If you type in the code name in the command prompt or terminal with a -h.

python3 yahoofinance.py -h
usage: yahoo_finance.py [-h] ticker
positional arguments: ticker optional arguments: -h, --help show this help message and exit
The ticker symbol, often known as a stock symbol, is used to identify a corporation.

To find Apple Inc stock data, we would make the following argument:

python3 yahoofinance.py AAPL
This will produce a JSON file named AAPL-summary.json in the same folder as the script.

This is what the output file would look like:

{
"Previous Close": "293.16",
"Open": "295.06",
"Bid": "298.51 x 800",
"Ask": "298.88 x 900",
"Day's Range": "294.48 - 301.00",
"52 Week Range": "170.27 - 327.85",
"Volume": "36,263,602",
"Avg. Volume": "50,925,925",
"Market Cap": "1.29T",
"Beta (5Y Monthly)": "1.17",
"PE Ratio (TTM)": "23.38",
"EPS (TTM)": 12.728,
"Earnings Date": "2020-07-28 to 2020-08-03",
"Forward Dividend & Yield": "3.28 (1.13%)",
"Ex-Dividend Date": "May 08, 2020",
"1y Target Est": 308.91,
"ticker": "AAPL",
"url": "http://finance.yahoo.com/quote/AAPL?p=AAPL"
}
This code will work for fetching the stock market data of various companies. If you wish to scrape hundreds of pages frequently, there are various things you must be aware of.

Why Perform Yahoo Finance Data Scraping?
why-perform-yahoo-finance-data-scraping
If you're working with stock market data and need a clean, free, and trustworthy resource, Yahoo Finance might be the best choice. Different company profile pages have the same format, thus if you construct a script to scrape data from a Microsoft financial page, you could use the same script to scrape data from an Apple financial page.

If anyone is unable to choose how to scrape Yahoo finance data then it is better to hire an experienced web scraping company like Web Screen Scraping.

For any queries, contact Web Screen Scraping today or Request for a free Quote!!

https://www.webscreenscraping.com/how-web-scraping-is-used-to-extra...

Views: 2

Comment

You need to be a member of On Feet Nation to add comments!

Join On Feet Nation

© 2021   Created by PH the vintage.   Powered by

Badges  |  Report an Issue  |  Terms of Service